Extended Relational Databases

.l

n‘

JUMP INTO 14HE E%O}VINGQIURL

OFDATA SE MANAGEME |

Prmcq bles of Database| Manag ' with the : datab
management information to understand and apply the fundamental co pts of
databdse design'and modeling, database systems; data storage, and thelevolving world
of data warehoising, governance and more. Designed for those studying datal
management for information management or computer science, this illustrates
textbook has a well-balanced theory—practice focus and covers the essential tapics,
from technologies up to recent trends like Big Data, NoSQL, and
analytics. On-going case studies, dnll down boxes that reveal deeper insights on key,
topics, retention questions at the end of every section of a chapter, and connections
boxes that show the ionship b concepts ighout the text are included to
provide the practical tools to get started in database management.

WILFRIED LEMAHIEU
SEPPE VANDEN BROUCKE
BART BAESENS

PRINCIPLES OF
DATABASE

MANAGEMENT

THE PRACTICAL GUIDETO STORING. MANAGING
AND ANALYZING BIG AND SMALL DATQ‘

SN3S3v8 ONY
v MAHYIAT

I4IN0YE NIANYA

;

=
¥

L
-
=
rm
w
o
By

N SN B WS

KEY FEATURES INCLUDE:
* Full-color illustrations throughout the text.

= Extensive coverage of important trending topics, including data warehousing, business
intelligence, data integration, data quality, data governance, Big Data and analytics.

* An online playground with diverse envi including MySQL for querying;
MongoDB; Neodj Cypher; and a tree structure visualization environment.

* Hundreds of examples to illustrate and clarify the concepts discussed that can be
reproduced on the book’s companion online playground.

* Case studies, review questions, problems and exercises in every chapter.

* Additional cases, probl and it in the di

INIW3IVNVIN 3SVE

Online Resources
www.cambridge.org/

Instructor’s resources
M Solutions manual
S Code and data for examples

ISBN 978
Cover illustration: @Chen Hanquan / DigitalVision / Getty lmages.
Cover design: Andrew Ward.

9"781107"186125">

www.pdbmbook.co

http://www.pdbmbook.com/

Introduction

Success of the relational model
Limitations of the Relational Model
Active RDBMS Extensions
Object-Relational RDBMS extensions
Recursive SQL queries

Success of the Relational Model

Relational model: tuples and relations

The relational model requires all relations to be
normalized

The relational model is also referred to as a value
based model (¢ identity based OO model)

SQL is an easy to learn, descriptive and non-
navigational data manipulation language (DML)

Limitations of the Relational Model

* Complex objects are difficult to handle
 Due to the normalization, the relational model has
a flat structure

— expensive joins needed to de-fragment the data before
it can be successfully used

* Specialization, categorization and aggregation
cannot be directly supported

Limitations of the Relational Model

Only two type constructors: tuple constructor and
set constructor

Tuple constructor can only be used on atomic values
Set constructor can only be used on tuples

Both constructors are not orthogonal

Not possible to model behavior or store functions
Poor support for audio, video, text

Active RDBMS Extensions

* Traditional RDBMSs are passive
* Modern day RDBMSs are active
* Triggers and stored procedures

Triggers

* A triggeris a piece of SQL code consisting of
declarative and/or procedural instructions and
stored in the catalog of the RDBMS

* Triggers can also reference attribute types in other
tables

Triggers

EMPLOYEE(SSN, ENAME, SALARY, BONUS, JOBCODE, DNR)
DEPARTMENT(DNR, DNAME, TOTAL-SALARY, MGNR)

CREATE TRIGGER SALARYTOTAL
AFTER INSERT ON EMPLOYEE
FOR EACH ROW

WHEN (NEW.DNR IS NOT NULL)
UPDATE DEPARTMENT

SET TOTAL-SALARY = TOTAL-SALARY + NEW.SALARY

WHERE DNR = NEW.DNR

After Trigger!

Triggers

WAGE (JOBCODE, BASE_SALARY, BASE_BONUS)

CREATE TRIGGER WAGEDEFAULT

BEFORE INSERT ON EMPLOYEE

REFERENCING NEW AS NEWROW _
FOR EACH ROW Before Trigger!
SET (SALARY, BONUS) =

(SELECT BASE_SALARY, BASE BONUS

FROM WAGE

WHERE JOBCODE = NEWROW.JOBCODE)

Triggers

* Advantages

— Automatic monitoring and verification in case of
specific events or situations

— Modelling extra semantics and/or integrity rules
without changing the user front-end or application
code

— Assign default values to attribute types for new tuples
— Synchronic updates in case of data replication;

— Automatic auditing and logging which may be hard to
accomplish in any other application layer

— Automatic exporting of data

Triggers

* Disadvantages

— Hidden functionality, which may be hard to follow-up and
manage

— Cascade effects leading up to an infinite loop of a trigger
triggering another trigger etc.

— Uncertain outcomes if multiple triggers for the same database
object and event are defined

— Deadlock situations

— Debugging complexities since they don’t reside in an application
environment

— Maintainability and performance problems

Stored Procedures

* A stored procedure is a piece of SQL code
consisting of declarative and/or procedural

instructions and stored in the catalog of the
RDBMS

* Needs to be invoked explicitly

Stored Procedures

CREATE PROCEDURE REMOVE-EMPLOYEES

(DNR-VAR IN CHAR(4), JOBCODE-VAR IN CHAR(6)) AS
BEGIN

DELETE FROM EMPLOYEE

WHERE DNR = DNR-VAR AND JOBCODE = JOBCODE-VAR;
END

import java.sql.CallableStatement;

CallableStatement cStmt = conn.prepareCall("{call REMOVE-

EMPLOYEES(?, ?)}");
cStmt.setString(1, "D112");
cStmt.setString(2, "J0OB124");

Stored Procedures

* Advantages

— Similar to OODBMSs, they store behavior in the
database

— They can reduce network traffic

— They can be implemented in an application-
independent way

— They improve data and functional independence

— They can be used as a container for several SQL
instructions that logically belong together

— They are easier to debug in comparison to triggers

Object-Relational RDBMS extensions

e OODBMSs are perceived as very complex to work with

— No good standard DML (e.g. SQL)
— Lack of a transparent 3-layer database architecture

* QObject-Relational DBMSs (ORDBMSs) keep the relation as the
fundamental building block and SQL as the core DDL/DML, but with the
following OO extensions:

— User-Defined Types (UDTs)

— User-Defined Functions (UDFs)
— Inheritance

— Behavior

— Polymorphism

— Collection types

— Large objects (LOBs)

User-Defined Types (UDTs)

Standard SQL: CHAR, VARCHAR, INT, FLOAT, DOUBLE, DATE,
TIME, BOOLEAN, etc.

User-Defined Types (UDT) define customized data types
with specific properties

Five types:

— Distinct data types: extend existing SQL data types

— Opaque data types: define entirely new data types

— Unnamed row types: use unnamed tuples as attribute values

— Named row types: use hamed tuples as attribute values
— Table data types: define tables as instances of table types

Distinct data types

* A distinct data type is a user-defined data type which
specializes a standard, built-in SQL data type.

CREATE DISTINCT TYPE US-DOLLAR AS DECIMAL(8,2)
CREATE DISTINCT TYPE EURO AS DECIMAL(8,2)

CREATE TABLE ACCOUNT
(ACCOUNTNO SMALLINT PRIMARY KEY NOT NULL,

AMOUNT-IN-DOLLAR US-DOLLAR,
AMOUNT-IN-EURO EURO)

Distinct data types

* Once a distinct data type has been defined, the
ORDBMS will automatically create two casting
functions

SELECT *
FROM ACCOUNT ERRORI
WHERE AMOUNT-IN-EURO > 1000

SELECT *
FROM ACCOUNT
WHERE AMOUNT-IN-EURO > EURO(1000)

Opaque data types

* An opaque data type is an entirely new, user-
defined data type, not based upon any existing
SQL data type.

 Examples: data types for image, audio, video,
fingerprints, text, spatial data, RFID tags, QR
codes, etc.

Opaque data types

CREATE OPAQUE TYPE IMAGE AS <..>
CREATE OPAQUE TYPE FINGERPRINT AS <..>

CREATE TABLE EMPLOYEE
(SSN SMALLINT NOT NULL,
FNAME CHAR(25) NOT NULL,
LNAME CHAR(25) NOT NULL,

EMPFINGERPRINT FINGERPRINT,
PHOTOGRAPH IMAGE)

Unnamed Row Types

 An unnamed row type includes a composite data type in a table by
using the keyword ROW.

* It consists of a combination of data types such as built-in types,
distinct types, opaque types, etc.

CREATE TABLE EMPLOYEE
(SSN SMALLINT NOT NULL,

NAME ROW(FNAME CHAR(25), LNAME CHAR(25)),
ADDRESS ROMW(

STREET ADDRESS CHAR(20) NOT NULL,

ZIP CODE CHAR(8),

CITY CHAR(15) NOT NULL),

EMPFINGERPRINT FINGERPRINT,
PHOTOGRAPH IMAGE)

Named row types

A named row type is a user-defined data type
which groups a coherent set of data types into a
new composite data type and assigns a
meaningful name to it

* can be used in table definitions, queries, or

anywhere else a standard SQL data type can be
used

* Note: the usage of (un)named row types implies
the end of the first normal form!

Named row types

CREATE ROW TYPE ADDRESS AS
(STREET ADDRESS CHAR(20) NOT NULL,
ZIP CODE CHAR(S8),

CITY CHAR(15) NOT NULL)

CREATE TABLE EMPLOYEE
(SSN SMALLINT NOT NULL,
FNAME CHAR(25) NOT NULL,
LNAME CHAR(25) NOT NULL,
EMPADDRESS ADDRESS,

EMPFINGERPRINT FINGERPRINT,
PHOTOGRAPH IMAGE)

Named row types

SELECT LNAME, EMPADDRESS
FROM EMPLOYEE
WHERE EMPADDRESS.CITY = 'LEUVEN'

SELECT E1.LNAME, E1.EMPADDRESS
FROM EMPLOYEE E1, EMPLOYEE E2
WHERE E1.EMPADDRESS.CITY =
E2.EMPADDRESS.CITY

AND E2.SSN = '123456789"

Table data types

* A table data type (or typed table) defines the type
of a table.

— Similar to a class in OO

CREATE TYPE EMPLOYEETYPE
(SSN SMALLINT NOT NULL,
FNAME CHAR(25) NOT NULL,
LNAME CHAR(25) NOT NULL,
EMPADDRESS ADDRESS

EMPFINGERPRINT FINGERPRINT,
PHOTOGRAPH IMAGE)

Table data types

CREATE TABLE EMPLOYEE OF TYPE
EMPLOYEETYPE PRIMARY KEY (SSN)

CREATE TABLE EX-EMPLOYEE OF TYPE
EMPLOYEETYPE PRIMARY KEY (SSN)

Table data types

CREATE TYPE DEPARTMENTTYPE
(DNR SMALLINT NOT NULL,
DNAME CHAR(25) NOT NULL,
DLOCATION ADDRESS
MANAGER REF(EMPLOYEETYPE))

Note: reference can be replaced by the actual data it refers to
by means of the DEREF (from dereferencing) function.

User-Defined Functions (UDFs)

 Every RDBMS comes with a set of built-in
functions, e.g., MIN(), MAX(), AVG(), etc.

* User-Defined Functions (UDFs) allow users to
extend these by explicitly defining their own
functions

* Every UDF consists of

— name
— input and output arguments
— implementation

User-Defined Functions (UDFs)

e UDFs are stored in the ORDBMS and hidden from
the applications

* UDFs can be overloaded
* Types

— sourced functions

— external functions

Sourced function

 UDF which is based on an existing, built-in
function

CREATE DISTINCT TYPE MONETARY AS DECIMAL(8,2)

CREATE TABLE EMPLOYEE
(SSN SMALLINT NOT NULL,
FNAME CHAR(25) NOT NULL,
LNAME CHAR(25) NOT NULL,
EMPADDRESS ADDRESS,
SALARY MONETARY,

EMPFINGERPRINT FINGERPRINT,
PHOTOGRAPH IMAGE)

Sourced function

CREATE FUNCTION AVG(MONETARY)
RETURNS MONETARY
SOURCE AVG(DECIMAL(S8,2))

SELECT DNR, AVG(SALARY)
FROM EMPLOYEE
GROUP BY DNR

External functions

e External functions are written in an external host
language
— Python, C, Java, etc.

e Can return a single value (scalar) or table of values

Inheritance

« ORDBMS extends an RDBMS by providing explicit
support for inheritance, both at

— the level of a data type
— the level of a typed table

Inheritance at data type level

Child data type inherits all the properties of a
parent data type and can then further specialize it
by adding specific characteristics

CREATE ROW TYPE ADDRESS AS
(STREET ADDRESS CHAR(20) NOT NULL,
ZIP CODE CHAR(8),
CITY CHAR(15) NOT NULL)

CREATE ROW TYPE INTERNATIONAL_ADDRESS AS
(COUNTRY CHAR(25) NOT NULL) UNDER ADDRESS

Inheritance at data type level

CREATE TABLE EMPLOYEE
(SSN SMALLINT NOT NULL,
FNAME CHAR(25) NOT NULL,
LNAME CHAR(25) NOT NULL,
EMPADDRESS INTERNATIONAL_ADDRESS,
SALARY MONETARY,

EMPFINGERPRINT FINGERPRINT,
PHOTOGRAPH IMAGE)

SELECT FNAME, LNAME, EMPADDRESS
FROM EMPLOYEE

WHERE EMPADDRESS.COUNTRY = 'Belgium'’
AND EMPADDRESS.CITY LIKE 'Leu%'’

Inheritance at Table Type Level

CREATE TYPE EMPLOYEETYPE
(SSN SMALLINT NOT NULL,
FNAME CHAR(25) NOT NULL,
LNAME CHAR(25) NOT NULL,
EMPADDRESS INTERNATIONAL_ADDRESS

EMPFINGERPRINT FINGERPRINT,
PHOTOGRAPH IMAGE)

CREATE TYPE ENGINEERTYPE AS
(DEGREE CHAR(10) NOT NULL,
LICENSE CHAR(20) NOT NULL) UNDER EMPLOYEETYPE

CREATE TYPE MANAGERTYPE AS
(STARTDATE DATE,
TITLE CHAR(20)) UNDER EMPLOYEETYPE

Inheritance at Table Type Level

CREATE TABLE EMPLOYEE OF TYPE EMPLOYEETYPE PRIMARY KEY (SSN)
CREATE TABLE ENGINEER OF TYPE ENGINEERTYPE UNDER EMPLOYEE
CREATE TABLE MANAGER OF TYPE MANAGERTYPE UNDER EMPLOYEE

SELECT SSN, FNAME, LNAME, STARTDATE, TITLE
FROM MANAGER

SELECT SSN, FNAME, LNAME
FROM EMPLOYEE

SELECT SSN, FNAME, LNAME
FROM ONLY EMPLOYEE

Behavior

 E.g, triggers, stored procedures or UDFs

e ORDBMS can include the signature or interface of
a method in the definitions of data types and
tables

— Information hiding

Behavior

CREATE TYPE EMPLOYEETYPE
(SSN SMALLINT NOT NULL,
FNAME CHAR(25) NOT NULL,
LNAME CHAR(25) NOT NULL,
EMPADDRESS INTERNATIONAL_ADDRESS,

EMPFINGERPRINT FINGERPRINT,
PHOTOGRAPH IMAGE,

FUNCTION AGE(EMPLOYEETYPE) RETURNS INTEGER)
CREATE TABLE EMPLOYEE OF TYPE EMPLOYEETYPE PRIMARY KEY (SSN)

SELECT SSN, FNAME, LNAME, PHOTOGRAPH
FROM EMPLOYEE
WHERE AGE =60

Polymorphism

e Subtype inherits both the attribute types and
functions of its supertype

e Subtype can also override functions to provide
more specialized implementations

* Polymorphism: same function call can invoke
different implementations

Polymorphism

CREATE FUNCTION TOTAL_SALARY(EMPLOYEE E)
RETURNING INT
AS SELECT E.SALARY

CREATE FUNCTION TOTAL_SALARY(MANAGER M)
RETURNING INT
AS SELECT M.SALARY + <monthly bonus>

SELECT TOTAL_SALARY FROM EMPLOYEE

Collection Types

Can be instantiated as a collection of instances of
standard data types or UDTs

Set: unordered collection, no duplicates

Multiset or bag: unordered collection, duplicates
allowed

List: ordered collection, duplicates allowed

Array: ordered and indexed collection, duplicates
allowed

Note: end of the first normal form!

Collection Types

CREATE TYPE EMPLOYEETYPE
(SSN SMALLINT NOT NULL,
FNAME CHAR(25) NOT NULL,
LNAME CHAR(25) NOT NULL,
EMPADDRESS INTERNATIONAL_ADDRESS,

EMPFINGERPRINT FINGERPRINT,
PHOTOGRAPH IMAGE,
TELEPHONE SET (CHAR(12)),

FUNCTION AGE(EMPLOYEETYPE) RETURNS INTEGER)
CREATE TABLE EMPLOYEE OF TYPE EMPLOYEETYPE (PRIMARY KEY SSN)

SELECT SSN, FNAME, LNAME
FROM EMPLOYEE

WHERE '2123375000' IN (TELEPHONE)

Collection Types

SELECT T.TELEPHONE
FROM THE (SELECT TELEPHONE FROM EMPLOYEE) AS T

ORDER BY T.TELEPHONE

Collection Types

CREATE TYPE DEPARTMENTTYPE AS
(DNR CHAR(3) NOT NULL,
DNAME CHAR(25) NOT NULL,
MANAGER REF(EMPLOYEETYPE),
PERSONNEL SET (REF(EMPLOYEETYPE))

CREATE TABLE DEPARTMENT OF TYPE DEPARTMENTTYPE (PRIMARY KEY DNR)

SELECT PERSONNEL
FROM DEPARTMENT
WHERE DNR ="123/

SELECT DEREF(PERSONNEL).FNAME, DEREF(PERSONNEL).LNAME
FROM DEPARTMENT
WHERE DNR ="'123'

Large objects

* Multimedia database applications
 LOB data will be stored in a separate table and tablespace

* Types of LOB data:
— BLOB (Binary Large Object): a variable-length binary string
whose interpretation is left to an external application

— CLOB (Character Large Object): variable-length character strings
made up of single-byte characters

— DBCLOB (Double Byte Character Large Object): variable-length
character strings made up of double-byte characters.

Recursive SQL Queries

Jones

|
[|
Adams Smith

— Baesens

— Lemahieu

Hvanden Broucke

 Employee(SSN, Name, Salary, MNGR)

Recursive SQL Queries

SS |Name Salary | MNG
N R
1 |Jones 10.00 |NULL
0
2 |Baesens 2.000 |3
3 |Adams 5.000 |1
4 |Smith 6.000 |1
5 |vanden 3.000 |3

Recursive SQL Queries

WITH SUBORDINATES(SSN, NAME, SALARY, MNGR, LEVEL)
AS
((SELECT SSN, NAME, SALARY, MNGR, 1
FROM EMPLOYEE
WHERE MNGR=NULL)
UNION ALL
(SELECT E.SSN, E.NAME, E.SALARY, E.MNGR, S.LEVEL+1
FROM SUBORDINATES AS S, EMPLOYEE AS E
WHERE S.SSN=E.MNGR)

SELECT * FROM SUBORDINATES
ORDER BY LEVEL

49

Recursive SQL Queries

SSN | NAME SALARY | MNGR | LEVEL
1 Jones 10.000 | NULL 1
SSN | NAME SALARY | MNGR | LEVEL
SSN | NAME SALARY | MNGR | LEVEL 1 Jones 10.000 | NULL 1
3 Adams 5.000 1 2 3 Adams 5.000 1 2
4 Smith 6.000 1 2 4 Smith 6.000 1 2
2 Baesens 2.000 3 3
5 vanden Broucke 3.000 3 3
SSN | NAME SALARY | MNGR | LEVEL
6 Lemahieu 2.500 3 3
2 Baesens 2.000 3 3
5 vanden Broucke 3.000 3 3
6 Lemahieu 2.500 3 3

Conclusions

Success of the relational model
Limitations of the Relational Model
Active RDBMS Extensions
Object-Relational RDBMS extensions
Recursive SQL queries

More information?

- W
(! Ll { E

JUMP INTU 14HE E% _ VING‘IURL

e S .
N SN

OFDATABASE MA GEME»

Princigles of Database,
manqement information to

bdse design"and modeling, database systems; data storage, and the'evolving world
of data warehoising, governance and more. Designed for those studying datal
management for information management or computer science, this illustrates
textbook has a we" ba[anced theory practice focus and covers the essential tapics,
from blished ies up to recent trends like Big Data, NoSQL, and
analytics. On-going case studies, drill-down boxes that reveal deeper insights on key
topics, retention questions at the end of every section of a chapter, and connections
boxes that show the relationship b hroughout the text are included to
provide the practical tools to get started in database management.

with the

KEY FEATURES INCLUDE:
* Full-color illustrations throughout the text.

* Extensive coverage of important trending topics, including data warehousing, business
intelligence, data integration, data quality, data governance, Big Data and analytics.

An online playground with diverse environments, including MySQL for querying;
MongoDB; Neodj Cypher; and a tree structure visualization environment.

Hundreds of examples to illustrate and clarify the concepts discussed that can be
reproduced on the book’s companion online playground.

Case studies, review questions, problems and exercises in every chapter.

Additional cases, p: and it in the di

Online Resources
www.cambridge.org/

Instructor’s resources

M Solutions manual
M Code and data for examples

Cover illustration: @Chen Hanquan / DigitalVision / Getty lmages.
Cover design: Andrew Ward.

9"781107"186125

il)
1d and apply the fund: | col -

>

SN3S3 V8 ONY
T3IHYIWAT

I1IN0YE NIONYA

|

bl

<2
O
—
m
w
o)
M

INIWIIVNVIN 3SVE

.

WILFRIED LEMAHIEU
SEPPE VANDEN BROUCKE
BART BAESENS

PRINCIPLES OF
DATABASE

MANAGEMENT

THE PRACTICAL GUIDE TO STORING. MANAGING
AND ANALYZING BIG AND SMALL DAT&

www.pdbmbook.co

http://www.pdbmbook.com/

